Programação

              

Atenção, a comissão organizadora da XII SEMAT da UFRPE informa que a programação foi modificada em virtude do Dia do Servidor Público.

 

Programação

 

Segunda

26/10

Terça

27/10

Quarta

28/10

Quinta

29/10

14:00 às 15:00

Conferência de Abertura

Palestra I

Palestra III

Mesa Redonda

15:00 às 16:00

S. Temática

(St02 e St03)

S. Temática 

(St04 e St05)

16:00 às 17:00

S. Temática

(St01 e St06)

Minicursos e oficinas

(Mt01, Mt02, Mt03, Mt04, Mt05, Mt06, Mt07, Mt08, Ot01, Ot02, Ot03)

Minicursos e oficinas

(Mt01, Mt02, Mt03, Mt04, Mt05, Mt06, Mt07, Mt08, Ot01, Ot02, Ot03)

Minicursos e oficinas

(Mt02, Mt03, Mt04, Mt05, Mt06, Mt07, Mt08, Ot01, Ot02, Ot03)

17:00 às 17:40

Pôsteres Digitais

e

Exposições

17:40 às 18:30

Intervalo

Intervalo

Intervalo

18:30 às 19:30

Palestra VI

Palestra II

Palestra IV

Palestra V

19:30 às 20:30

Minicursos e oficinas

(Mn01, Mn02, Mn03, Mn04, Mn05, Mn06, Mn07, On01, On02, On03, On04)

Minicursos e oficinas

(Mn01, Mn02, Mn03, Mn04, Mn05, Mn06, Mn07, On01, On02, On03, On04)

Minicursos e oficinas

(Mn01, Mn02, Mn03, Mn04, Mn05, Mn06, Mn07, On01, On02, On03, On04)

 

Conferência

de

Encerramento

 

20:30 às 21:10

 

 

        Caderno de resumos

Inscreva-se no Eventick

 

 

Atividades da XII SEMAT

Conferência de abertura

Movimentos circulares, harmônicos, Keplerianos e pendulares (por Hildeberto Cabral, DMat/UFPE e PVNS-UFS)

Nesta palestra faremos consideracões sobre os tipos dos movimentos mencionados no título. Falaremos sobre alguns pontos relativos a leida graviatacãoo universal de Newton aproveitando para relacionar os diferentes movimentos mencionados.

Minicursos e oficinas - tarde (16h-17h40)

  • Mt01 - Matemática e suas abrangências: a contribuição da Álgebra Linear para a Geologia ( por Fernando José Pessoa de Andrade, LM-UFRPE e José Deibson da Silva, DM-UFRPE )
  • Mt02 - Teoria dos jogos combinatórios: uma análise ao Hackenbush (por Rafael Pedro da Silva, LM-UFRPE e Yuri de Souza Silva, LM-UFRPE)
  • Mt03 - Ábaco, material dourado e escala de Cuisinaire: conhecendo seu potencial e suas limitações (por Sandra da Silva Santos, Ded-UFRPE, Cleide Rodrigues de Oliveira, Ded-UFRPE e Kalina Lígia de Lima Gomes, Ded-UFRPE)
  • Mt04 - Quem sabe colorir mapas? (por Karla Ferreira de Arruda Duque, DM-UFRPE)
  • Mt05 - As impossíveis construções geométricas com régua e compasso (por Vital Barbosa LIma Filho, LM-UFRPE e Maria Ângela Caldas Didier, DM-UFRPE)
  • Mt06 - Introdução à computação científica com Python (por Lidiane de Souza Monteiro, DEINFO-UFRPE)
  • Mt07 - Os jogos como estratégia de ensino e aprendizagem da Matemática (por Luiz Felipe Santos Miranda, LM-UFRPE, Andryelle Karoline Belmiro de Melo, LM-UFRPE e Sandra da Silva Santos, DE-UFRPE)
  • Mt08 - Mudando o resultado das eleições: a matemática explica! (por Wanderson Aleksander da Silva Oliveira, DM-UFRPE)
  • Ot01 - O uso de dobraduras como recurso para o estudo de conceitos geométricos (por Kenia Carla Belo Domingues, Glowecki Secretaria de Educação-Governo do Estado de Pernambuco e Maité Kulesza, DM-UFRPE)
  • Ot02 - Uma dupla notável de triângulos e seus disfarces ( por Adriano Régis Rodrigues, DM-UFRPE)
  • Ot03 - Lógica de programação como ferramenta do ensino de Matemática (por Rildo da Silva Vaz Júnior,IFPE Campus Pesqueira e Tiago Eduardo da Silva, IFPE Campus Pesqueira)

Minicursos e oficinas - noite (19h30-21h10)

  • Mn01 - O que são paradoxos? (por Débora Virgínia Ramos Barbosa, Cin-UFPE e Daniel Cassimiro Carneiro da Cunha DM-UFRPE)
  • Mn02 - Criptografia com curvas elípticas (por Sally Andria Vieira da Silva, DM-UFPB)
  • Mn03 - Minicurso de jogos digitais (por Rúbia Araújo Pessôa de Albuquerque LM-UFRPE e Ross Alves do Nascimento Ded-UFRPE)
  • Mn04 - O teorema de Desargues: um breve passeio sobre perspectiva e arte (por Lucas Gabryel Leite Luna LM-UFRPE e Adriano Regis Rodrigues DM-UFRPE )
  • Mn05 - Tópicos de matemática olímpica: quádrupla harmônica e a circunferência de Apolônio (Maurício Venâncio da Silva, LM-UFRPE e Adriano Regis Rodrigues DM-UFRPE)
  • Mn06 - Leis de Kepler (Josafary Pereira da Silva Campêlo, LM-UFRPE, Maité Kulesza DM-UFRPE e Marcelo Pedro dos Santos DM-UFRPE)
  • Mn07 - A longa caminhada do um ao zero (por Severino Barros de Melo, Ded-Ufrpe e Rodrigo Tomaz Silva de Melo, Dmat-UFPE )
  • On01 - Oficina de introdução ao LaTex (por Filipe Mendonça de Lima, Campus Serra Talhada-UFRPE )
  • On02 - Análise de aspectos diversos do novo ENEM e uma forma pouco usual de encarar a prova da área do conhecimento de Matemática e suas Tecnologias (por Raul Bueno Lins Campos, Colégio Militar do Recife)
  • On03 - Matemática para o Ensino Médio: uma possibilidade para o PIBID-UFRPE (Douglas de Souza Queiroz, LM-UFRPE,  Felipe Ramon Basante Silva, DM-UFRPE, Clessius Silva, DM-UFRPE)
  • On04 - Como construir questões bem elaboradas? (Wanderson Aleksander da Silva Oliveira, DM-UFRPE)

Sessões Temáticas

  • St01 - História da matemática e Educação Matemática: da pesquisa à sala de aula (por Severino Barros de Melo, Ded-UFRPE)
  • St02 - O desenvolvimento teórico da Teoria dos Grupos: contribuições para seu ensino (Everton Henrique Cardoso de Lira, Escola Municipal Manoel Joaquim dos Santos)
  • St03 - Somas de quadrados e fatoração única em anéis (por Thiago Luiz de Oliveira do Rêgo DM-UFPB)
  • St04 - Algoritmo guloso (por Camila Mendonça Morais, IFPE Campus Agreste e Thiago Dias Oliveira Silva, DM-UFRPE)
  • St05 - O poder do Python na computação científica e matemática (por Lidiane de Souza Monteiro, DEINFO-UFRPE)
  • St06 - O Subprojeto de Licenciatura em Matemática no PIBID da UFRPE (por Ângela Didier, DM-UFRPE, Coordenadora da área de Matemática do PIBID - UFRPE)

Pôsteres digitais

  • Po01 - Análise das produções de educação inclusiva nos encontros nacionais de educação matemática (por José Jeffernos da Silva, NFD-UFPE e Tânia Maria Goretti Donato Bazante NFD-UFPE)
  • Po02 - Trabalhando as quatro operações matemáticas (por Felipe Alexandre de Lima Lira, LM-UFRPE)
  • Po03 - Os modelos de espaço hiperbólico H^n e B^n e seus casos particulares em dimensão 2 (por Marcos Antônio Sobral Filho LM-UFRPE e Renato Teixeira Gomes DM-UFRPE)
  • Po04 - Dificuldade no conceito de progressão aritmética visualizada por meio de representação geométrica: um experimento com o recurso de software Superlogo (por Rúbia Araújo Pessôa de Albuquerque LM-UFRPE e Ross Alves do Nascimento Ded-UFRPE)
  •  Po05 - Uma breve abordagem histórica dos axiomas de Peano (por Everton Henrique Cardoso de Lira, Escola Municipal Manoel Joaquim dos Santos)

Palestras

Palestra I: Saúde vocal para profissionais de educação (por Andrezza Freitas - Fonoaudióloga)

Serão abordadas as principais patologias da voz, assim como os erros mais frequentes que podem levar às mesmas. Sendo o professor um dos profissionais que possui a voz como “instrumento de trabalho”, é imprescindível ter ciência de como manter a integridade vocal e como prevenir possíveis alterações que podem interferir no pleno uso desta. Através da Fonoaudiologia podem-se receber as orientações e intervenções adequadas neste processo. Tais orientações visam estabelecer um bom padrão vocal e uma rotina que facilite o trabalho em sala de aula, bem como após as atividades do docente.

Palestra II:  Leonhard Euler e a Teorema Fundamental da Álgebra: A primeira tentativa (Por John Andrew Fossa, UFRN)

Resumo 

No século XVIII o Teorema Fundamental da Álgebra ainda não foi demonstrado quando Nicolas Bernoulli sugeriu um contraexemplo ao Leonhard Euler. Este mostrou que o pretendido contraexemplo estava errado, pois achou uma fatoração explícita para a equação a ele apresentada. Em seguida, tentou generalizar o seu método para obter uma demonstração geral do teorema. Não teve sucesso e, assim, tentou outra abordagem, embora também sem sucesso. Faremos uma apresentação do teorema como foi encarado no século XVIII e uma explanação do trabalho de Euler sobre o suposto contraexemplo, bem como sua primeira abordagem do teorema geral. Faremos ainda algumas observações sobre o que este trabalho de Euler pode nos ensinar sobre a importância da História da Matemática e sobre a sua relação com a Educação Matemática.

Palestra IV: Olimpíadas de Matemática: lições de vida, lições para a vida  (Por Cláudio Tadeu Cristino DEINFO-UFRPE)

Pretendo falar sobre a História das Olimpíadas de Matemática no mundo e, em particular, sobre a Olimpíada Brasileira de Matemática das Escolas Públicas, e todos os projetos que seguem deste evento. Apresentarei alguns interessantes dados para a reflexão sobre os impactos das Olimpíadas de conhecimento no contexto geral da educação. Falarei também sobre o programa de bolsas oferecidos a medalhistas e de como muitas vidas foram e podem ser transformadas pelo engajamento em projetos deste tipo. Haverá sorteio de problemas e soluções.
 
Palestra V: Educação matemática e formação de professores: caminhos e desafios? (por Paula Baltar, CE-UFPE)

 

Palestra VI: Agulhas inteiras num palheiro polinomial (por Eudes Naziazeno, DMat-UFPE)

Em Lógica Matemática, é muito útil saber uma forma "fácil" de descrever os números inteiros dentro de um anel de polinômios de característica zero.  Veremos alguns conceitos básicos de lógica de primeira ordem dos anéis, propriedades interessantes dos números inteiros, bem como algumas aplicações da definabilidade dos inteiros em problemas em Lógica Matemática.

Mesa Redonda

Uma reflexão acerca do currículo nos cursos de Licenciartura em Matemática das universidades públicas do estado de Pernambuco (por Jadilson Almeira (UFRPE), Valdir Bezerra (CAA/UFPE), Wagner Costa (UFRPE), Tiago Duque (UFRPE) e Diógenes Maclyne (UPE))
 

Os cursos de Licenciatura são regidos por leis nacionais e tem como principal objetivo formar professores para a educação básica. Por meio de documentos como as Diretrizes Curriculares é possível perceber quais são as orientações que norteiam a formulação de um projeto pedagógico que esteja em sintonia com os anseios da sociedade. Orientam sobre o perfil dos formandos; as competências e habilidades de caráter geral e comum e aquelas de caráter específico; os conteúdos curriculares de formação geral e os conteúdos de formação específica; o formato dos estágios; as características das atividades complementares; a estrutura do curso e as formas de avaliação. Em nosso estado temos três universidades públicas que oferecem licenciatura em matemática, a saber: UFRPE, UFPE e UPE. Com a intensão de refletir sobre como o currículo nas licenciaturas em matemática tem se adequado às exigências legais, pretendemos traçar um paralelo de como esta articulação tem se explicitado nestas IES. Para atender este objetivo iremos realizar uma reflexão sobre o Projeto Pedagógico do Curso (PPC) das licenciaturas em matemática de cada uma dessas instituições à luz das Diretrizes Curriculares Nacionais para os Cursos de licenciatura, além das Diretrizes específicas para os cursos de matemática e o documento da Sociedade Brasileira de Matemática. A mesa será composta por quatro professores debatedores, sendo todos professores de cursos de licenciaturas em matemática, dois da UFRPE (Ms. Wagner Costa e Ms. Tiago Duque), outro da UFPE (Ms. Valdir Bezerra) e um da UPE (Ms. Diógenes Maclyne). Além desses professores, teremos um professor mediador, o professor Ms. Jadilson Almeida (UFRPE). A mesa terá duração de duas horas, sendo que cada professor terá 15 minutos para apresentar suas reflexões acerca do currículo da licenciatura que atua, e no final teremos 1 hora para as questões da plateia. O público alvo dessa mesa será alunos de licenciatura em matemática, professores de matemática da educação básica e professores que atuam como formadores nas licenciaturas em matemática.

Conferência de Encerramento

Uma Fórmula para a Área de um Polígono (por Luís Maza, IM/UFAL)

Nesta palestra nós mostraremos uma fórmula para calcular a área de um polígono em função dos seus vértices, utilizando apenas matemática elementar.